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Abstract— The ability to accurately predict and simulate
human driving behavior is critical for the development of intelli-
gent transportation systems. Traditional modeling methods have
employed simple parametric models and behavioral cloning.
This paper adopts a method for overcoming the problem of
cascading errors inherent in prior approaches, resulting in
realistic behavior that is robust to trajectory perturbations. We
extend Generative Adversarial Imitation Learning to the train-
ing of recurrent policies, and we demonstrate that our model
rivals rule-based controllers and maximum likelihood models
in realistic highway simulations. Our model both reproduces
emergent behavior of human drivers, such as lane change rate,
while maintaining realistic control over long time horizons.

I. INTRODUCTION

Accurate human driver models are critical for realistic

simulation of driving scenarios, and have the potential to

significantly advance research in automotive safety. Tradi-

tionally, human driver modeling has been the subject of both

rule-based and data-driven approaches. Early rule-based at-

tempts include parametric models of car following behavior,

with strong built-in assumptions about road conditions [1] or

driver behavior [2]. The Intelligent Driver Model (IDM) [3]

extended this work by capturing asymmetries between accel-

eration and deceleration, preferred free road and bumper-to-

bumper headways, and realistic braking behavior. Such car-

following models were later extended to multilane conditions

with controllers like MOBIL [4], which maintains a utility

function and “politeness parameter” to capture intelligent

driver behavior in both acceleration and turning. These

controllers are all largely characterized by smooth, collision-

free driving, but rely on assumptions about driver behavior

and a small set of parameters that may not generalize well

to diverse driving scenarios.

In contrast, imitation learning (IL) approaches rely on data

typically provided through human demonstration in order to

learn a policy that behaves similarly to an expert. These

policies can be represented with expressive models, such

as neural networks, with less interpretable parameters than

those used by rule-based methods. Prior human behavior

models for highway driving have relied on behavioral cloning

(BC), which treats IL as a supervised learning problem,

fitting a model to a fixed dataset of expert state-action pairs

[5]–[8]. ALVINN [9], an early BC approach, trained a neural

network to map raw images and rangefinder inputs to discrete

turning actions. Recent advances in computing and deep
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learning have allowed this approach to scale to realistic

scenarios, such as parking lot, highway, and markerless

road conditions [10]. These BC approaches are conceptually

sound [11], but tend to fail in practice as small inaccuracies

compound during simulation. Inaccuracies lead the policy to

states that are underrepresented in the training data (e.g., an

ego-vehicle edging towards the side of the road), which leads

to yet poorer predictions, and ultimately to invalid or unseen

situations (e.g., off-road driving). This problem of cascading

errors [12] is well-known in the sequential decision making

literature and has motivated work on alternative IL methods,

such as inverse reinforcement learning (IRL) [13].

Inverse reinforcement learning assumes that the expert

follows an optimal policy with respect to an unknown reward

function. If the reward function is recovered, one can simply

use RL to find a policy that behaves identically to the

expert. This imitation extends to unseen states; in highway

driving a vehicle that is perturbed toward the lane boundaries

should know to return toward the lane center. IRL thus

generalizes much more effectively and does not suffer from

many of the problems of BC. Because of these benefits, some

recent efforts in human driver modeling emphasize IRL [14],

[15]. However, IRL approaches are typically computationally

expensive in their recovery of an expert cost function.

Instead, recent work has attempted to imitate expert behavior

through direct policy optimization, without first learning a

cost function [16], [17]. Generative Adversarial Imitation

Learning (GAIL) [17] in particular has performed well on a

number of benchmark tasks, leveraging the insight that expert

behavior can be imitated by training a policy to produce

actions that a binary classifier mistakes for those of an expert.

In this work, we apply GAIL to the task of modeling

human highway driving behavior. Our major contributions

are twofold. First, we extend GAIL to the optimization of

recurrent neural networks, showing that such policies per-

form with greater fidelity to expert behavior than feedforward

counterparts. Second, we apply our models to a realistic

highway simulator, where expert demonstrations are given

by real-world driver trajectories included in the NGSIM

dataset [18], [19]. We demonstrate that policy networks

optimized by GAIL capture many desirable properties of

earlier IL models, such as reproducing emergent driver

behavior and assigning high likelihood to expert actions,

while simultaneously reducing collision and off-road rates

necessary for long horizon highway simulations. Unlike past

work, our model learns to map raw LIDAR readings and

simple, hand-picked road features to continuous actions,

adjusting only turn-rate and acceleration each time step.
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II. PROBLEM FORMULATION

We regard highway driving as a sequential decision mak-

ing task in which the driver obeys a stochastic policy π(a | s)
mapping observed road conditions s to a distribution over

driving actions a. Given a class of policies πθ parameterized

by θ, we seek the policy that best mimics human driving

behavior. We adopt an IL approach to infer this policy from

a dataset consisting of a sequence of state-action tuples

(st, at). IL can be performed using BC or reinforcement

learning.

A. Behavioral Cloning

Behavioral cloning solves a regression problem in which

the policy parameterization is obtained by maximizing the

likelihood of the actions taken in the training data. BC works

well for states adequately covered by the training data. It

is forced to generalize when predicting actions for states

with little or no data coverage, which can lead to poor

behavior. Unfortunately, even if simulations are initialized

in common states, the stochastic nature of the policies allow

small errors in action predictions to compound over time,

eventually leading to states that human drivers infrequently

visit and are not adequately covered by the training data.

Poorer predictions can cause a feedback cycle known as

cascading errors [20].

In a highway driving context, cascading errors can lead

to off-road driving and collisions. Datasets rarely contain

information about how human drivers behave in these situ-

ations, which can lead BC policies to act erratically when

they encounter such states.

Behavioral cloning has been successfully used to produce

driving policies for simple behaviors such as car-following

on freeways, in which the state and action space can be

adequately covered by the training set. When applied to

learning general driving models with nuanced behavior and

the potential to drive out of lane, BC only produces accurate

predictions up to a few seconds [5], [6].

B. Reinforcement Learning

Reinforcement learning (RL) instead assumes that drivers

in the real world follow an expert policy πE whose actions

maximize the expected, global return

R(π, r) = Eπ

[
T∑

t=0

γtr(st, at)

]
(1)

weighted by a discount factor γ ∈ [0, 1). The local reward

function r(st, at) may be unknown, but fully characterizes

expert behavior such that any policy optimizing R(π, r) will

perform indistinguishably from πE .

Learning with respect to R(π, r) has several advantages

over maximum likelihood BC in the context of sequential

decision making [21]. First, r(st, at) is defined for all state-

action pairs, allowing an agent to receive a learning signal

even from unusual states. In contrast, BC only receives a

learning signal for those states represented in a labeled, finite

dataset. Second, unlike labels, rewards allow a learner to

establish preferences between mildly undesirable behavior

(e.g., hard braking) and extremely undesirable behavioral

(e.g., collisions). And finally, RL maximizes the global, ex-

pected return on a trajectory, rather than local instructions for

each observation. Once preferences are learned, a policy may

take mildly undesirable actions now in order to avoid awful

situations later. As such, reinforcement learning algorithms

provide robustness against cascading errors.

III. POLICY REPRESENTATION

Our learned policy must be able to capture human driving

behavior, which involves:

• Non-linearity in the desired mapping from states to

actions (e.g., large corrections in steering to avoid

collisions caused by small changes in the current state).

• High-dimensionality of the state representation, which

must describe properties of the ego-vehicle, in addition

to surrounding cars and road conditions.

• Stochasticity, as humans may take different actions each

time they encounter a given traffic scene.

To address the first and second points, we represent all

learned policies πθ using neural networks. To address the

third point, we interpret the network’s real-valued outputs

given input st as the mean μt and logarithm of the diagonal

covariance log νt of a Gaussian distribution. Actions are

chosen by sampling at ∼ πθ(at | st). We evaluate both

feedforward and recurrent network architectures. An example

feedforward model is shown in Fig. 2.

Feedforward neural networks directly map inputs to out-

puts. The most common architecture, multilayer perceptrons

(MLPs), consist of alternating layers of tunable weights and

element-wise nonlinearities. Neural networks have gained

widespread popularity due to their ability to learn robust

hierarchical features from complicated inputs [22], [23], and

have been used in automotive behavioral modeling for action

prediction in car-following contexts [6], [24]–[27], lateral

position prediction [28], and maneuver classification [29].

The feedforward MLP is limited in its ability to adequately

address partially observable environments. In real world driv-

ing, sensor error and occlusions may prevent the driver from

seeing all relevant parts of the driving state. By maintaining

sufficient statistics of past observations in memory, recurrent

policies [30], [31] disambiguate perceptually similar states

by acting with respect to histories of, rather than individual,

observations. In this work, we represent recurrent policies

using Gated Recurrent Unit (GRU) networks due to their

comparable performance with fewer parameters than other

architectures [32].

We use similar architectures for the feedforward and

recurrent policies. The recurrent policies consist of five

feedforward layers that decrease in size from 256 to 32

neurons, with an additional GRU layer consisting of 32

neurons. Exponential linear units (ELU) were used through-

out the network, which have been shown to combat the

vanishing gradient problem while supporting a zero-centered

distribution of activation vectors [33]. The MLP policies

have the same architecture, except the GRU layer is replaced
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with an additional feedforward layer. For each network

architecture, one policy is trained through BC and one policy

is trained through GAIL. In all, we trained four neural

network policies: GAIL GRU, GAIL MLP, BC GRU, and

BC MLP.

IV. POLICY OPTIMIZATION

Contrary to BC, which is trained with traditional regres-

sion techniques, reinforcement learning policies do not have

training labels for individual actions. Controller performance

is instead evaluated by expected return. This approach is

problematic in modeling human drivers, as the reward func-

tion r(st, at) is unknown. We first discuss a method for

training a policy with a known reward function and then

provide a method for learning the reward function.

A. Trust Region Policy Optimization

Policy gradient algorithms are a particularly effective

class of reinforcement learning techniques for optimizing

differentiable policies, including neural networks. As with

standard backpropagation, network parameters are optimized

using gradient-based updates, but the gradient can only be

approximated using simulated rollouts of the policy interact-

ing with the environment.

This empirical gradient estimate typically exhibits a high

amount of variance. In practice, this variance can cause

parameter updates that do not improve or even reduce perfor-

mance. In this work, we use Trust Region Policy Optimiza-

tion (TRPO) to learn our human driving policies [34]. TRPO

updates policy parameters through a constrained optimization

procedure that enforces that a policy cannot change too much

in a single update, and hence limits the damage that can be

caused by noisy gradient estimates.

Although the true reward function that governs the be-

havior of any particular human driver is unknown, domain

knowledge can be used to craft a surrogate reward function

such that a policy maximizing this quantity will realize a

similar stochastic state-action mapping as πE . Drivers avoid

collisions and going off road, while also favoring smooth

driving and minimizing lane-offset. If such features can

be combined into a reward function that closely approxi-

mates the true reward function for human driving r(st, at),
then modeling driver behavior reduces to RL. However,

handcrafting an accurate reward function is often difficult,

which motivates the use of Generative Adversarial Imitation

Learning.

B. Generative Adversarial Imitation Learning

Although r(st, at) is unknown, a surrogate reward

r̃(st, at) may be learned directly from data, without making

use of domain knowledge. GAIL [17] trains a policy to

perform expert-like behavior by rewarding it for “deceiving”

a classifier trained to discriminate between policy and expert

state-action pairs. Consider a set of simulated state-action

pairs Xθ = {(s1, a1), (s2, a2), ..., (sT , aT )} sampled from

πθ and a set of expert pairs XE sampled from πE . For a

neural network Dψ parameterized by ψ, the GAIL objective

is given by:

max
ψ

min
θ

V (θ, ψ) = E
(s,a)∼XE

[logDψ(s, a)]+

E
(s,a)∼Xθ

[log(1−Dψ(s, a))].
(2)

When fitting ψ, Equation (2) can simply be interpreted as

a sigmoid cross entropy objective, maximized by minibatch

gradient ascent. Positive examples are sampled from XE and

negative examples are sampled from rollouts generated by

interactions of πθ with the simulation environment. However,

V (θ, ψ) is non-differentiable with respect to θ, requiring

optimization via RL.

In order to fit πθ, a surrogate reward function can be

formulated from Eq. (2) as:

r̃(st, at;ψ) = − log(1−Dψ(st, at)), (3)

which approaches infinity as tuples (st, at) drawn from Xθ

become indistinguishable from elements of XE based on the

predictions of Dψ . After performing rollouts with a given

set of policy parameters θ, surrogate rewards r̃(st, at;ψ) are

calculated and TRPO is used to perform a policy update.

Although r̃(st, at;ψ) may be quite different from the true

reward function optimized by experts, it can be used to drive

πθ into regions of the state-action space similar to those

explored by πE .

V. DATASET

We use the public Next-Generation Simulation (NGSIM)

datasets for US Highway 101 [19] and Interstate 80 [18].

NGSIM provides 45 minutes of driving at 10 Hz for each

roadway. The US Highway 101 dataset covers an area in Los

Angeles approximately 640 m in length with five mainline

lanes and a sixth auxiliary lane for highway entrance and

exit. The Interstate 80 dataset covers an area in the San

Francisco Bay Area approximately 500 m in length with six

mainline lanes, including a high-occupancy vehicle lane and

an onramp.

Traffic density in both datasets transitions from uncon-

gested to full congestion and exhibits a high degree of

vehicle interaction as vehicles merge on and off the high-

way and must navigate in congested flow. The diversity of

driving conditions and the forced interaction of traffic partic-

ipants makes these sources particularly useful for behavioral

studies. The trajectories were smoothed using an extended

Kalman filter [35] on a bicycle model and projected to lanes

using centerlines extracted from the NGSIM CAD files. Cars,

trucks, buses, and motorcycles are in the dataset, but only

car trajectories were used for model training.

VI. EXPERIMENTS

In this work, we use GAIL and BC to learn policies for

two-dimensional highway driving. The performance of these

policies is subsequently evaluated relative to baseline models.
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Dψ

r̃(st, at;ψ)

Fig. 1: GAIL diagram. Circles represent values, rect-

angles represent operations, and dotted arrows rep-

resent recurrence relations. Whereas policy πθ states

st and actions at are evaluated by discriminator Dψ

during both training of πθ and Dψ , expert pairs

(boxed) are sampled only while training Dψ .

features

FF layer + ELU

FF layer + ELU

μ

log ν

N (μ, ν�I)

Fig. 2: Architecture for the feedforward multilayer

perceptron driving policy. The network output μ and

covariance parameters ν are used to construct a Gaus-

sian distribution over driver actions.

A. Environment

All experiments were conducted with the rllab reinforce-

ment learning framework [36]. The simulation environment

is a driving simulation on the NGSIM 80 and 101 road

networks. Simulations are initialized to match frames from

the NGSIM data, and the ego vehicle is randomly chosen

from among the traffic participants in the frame. Simulations

are run for 100 steps at 10 Hz and are ended prematurely if

the ego vehicle is involved in a collision, drives off road, or

drives in reverse.

The ego vehicle is driven according to a bicycle model

with acceleration and turn-rate sampled from the policy net-

work. All other traffic participants are replayed directly from

the NGSIM data, but are augmented with emergency braking

in the event of an imminent rear-end collision with the ego

vehicle. Specifically, if the acceleration predicted by the

Intelligent Driver Model (IDM) [3] is less than an activation

threshold of −2 m/s2, the vehicle then accelerates according

to the IDM while tracking the closest lane centerline. The

IDM is parameterized with a desired speed equal to the

vehicle’s speed at transition, a minimum spacing of 1 m,

a desired time headway of 0.5 s, a nominal acceleration of

3 m/s2, and a comfortable braking deceleration of 2.5 m/s2.

B. Features

All experiments use the same set of features. These

features can be decomposed into three sets. The first set,

the core features, are eight scalar values that provide basic

information about the vehicle’s odometry, dimensions, and

the lane-relative ego state. These are listed in Table I.

The core features alone are insufficient to describe the

local context. Information about neighboring vehicles and

the local road structure must be incorporated as well. Several

approaches exist for encoding such information in hand-

selected features relevant to the driving task [37]. Rather than

TABLE I: Core features used by the neural networks.

Feature Units Description

Speed m s−1 longitudinal speed

Vehicle Length m bounding box length

Vehicle Width m bounding box width

Lane Offset m lateral centerline offset

Lane-Relative Heading rad heading angle in the Frenet frame

Lane Curvature m−1 curvature of closest centerline point

Marker Dist. (L) m lat. dist. to left lane marking

Marker Dist. (R) m lat. dist. to right lane marking

restrict the model to a subset of vehicle relationships, we

introduce a more general and flexible feature representation.

In addition to the core features, a set of LIDAR-like

beams emanating from the vehicle are used to gather infor-

mation about its surroundings. These beams measure both

the distance and range rate of the first vehicle struck by

them, up to a maximum range. Our work used a maximum

range of 100 m, with 20 range and range rate beams, each

spaced uniformly in complete 360° coverage around the ego

vehicle’s center, as shown in Fig. 3.

Finally, a set of three indicator features are used to identify

when the ego vehicle encounters undesirable states. These

features take on a value of one whenever the ego vehicle is

involved in a collision, drives off road, or travels in reverse,

and are zero otherwise. All features were concatenated into

a single 51-element vector and fed into each model.

The previous action taken by the ego vehicle is not

included in the set of features provided to the policies. We

found that policies can develop an over-reliance on previous

actions at the expense of relying on the other features con-

tained in their input. To counteract this problem, we studied
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Fig. 3: LIDAR-like beams used for measuring range and

range rate.

the effect of replacing the previous actions with random noise

early in the training process. However, it was found that even

with these mitigations the inclusion of previous actions had

a detrimental effect on policy performance.

C. Baseline Models

The first baseline that we used to compare against our

deep policies is a static Gaussian (SG) model, which is an

unchanging Gaussian distribution π(a | s) = N (a | μ,Σ) fit

using maximum likelihood.

The second baseline model is a BC approach using mixture

regression (MR) [6]. The model has been used for model-

predictive control and has been shown to work well in

simulation and in real-world drive tests. Our MR model is

a Gaussian mixture over the joint space of the actions and

features, trained using expectation maximization [38]. The

stochastic policy is formed from the weighted combination

of the Gaussian components conditioned on the features.

Greedy feature selection is used during training to select a

subset of predictors up to a maximum feature count threshold

while minimizing the Bayesian information criterion [39].

The final baseline model uses a rule-based controller to

govern the lateral and longitudinal motion of the ego vehicle.

The longitudinal motion is controlled by the Intelligent

Driver Model with the same parameters as the emergency

braking controller used in the simulation environment. For

the lateral motion, MOBIL [4] is used to select the desired

lane, with a proportional controller used to track the lane

centerline. A small amount of noise is added to both the

lateral and longitudinal accelerations to make the controller

nondeterministic.

D. Validation

To evaluate the relative performance of each model,

we performed a systematic validation procedure. For each

model, 1,000 ten-second scenes were simulated 20 times

each in an environment identical to the one used to train

the GAIL policies. As these rollouts were performed, several

metrics were extracted to quantify the ability of each model

to simulate human driver behavior.

1) Root-Weighted Square Error: The root-weighted

square error (RWSE) captures the deviation of a model’s

probability mass from real-world trajectories [40]. For pre-

dicted variable v over m trajectories, we estimate the RWSE

by sampling n = 20 simulated traces per recorded trajectory:

RWSEH =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(
v
(i)
H − v̂

(i,j)
H

)2

, (4)

where v
(i)
H is the true value in the ith trajectory at time

horizon H and v̂
(i,j)
H is the simulated variable under sample

j for the ith trajectory at time horizon H . We extract the

RWSE in predictions of global position, centerline offset,

and speed over time horizons up to 5 s.

2) Kullback-Leibler Divergence: Driver models should

produce distributions over emergent quantities that match

those observed in real-world data. For each model, empirical

distributions were computed over speed, acceleration, turn-

rate, jerk, and inverse time-to-collision (iTTC) over simu-

lated trajectories. The closeness between the simulated and

real-world distributions was quantified using the Kullback-

Leibler (KL) divergence. Piecewise uniform distributions

with 100 evenly spaced bins were used.

3) Emergent Behavior: We also extracted a set of emer-

gent metrics that indicate model imitation performance in

relation to the NGSIM dataset. These additional metrics are

the lane change rate, the offroad duration, the collision rate,

and the hard brake rate.

The lane change rate is the average number of times a

vehicle makes a lane change within a 10-second trajectory.

Offroad duration is the average number of time steps per

trajectory that a vehicle spends more than 1 m outside the

closest outer road marker. The collision rate is the fraction

of trajectories where the ego vehicle intersects with another

traffic participant. The hard brake rate captures the frequency

at which a model chooses to brake harder than −3 m/s2.

The environment in which validation occurs is not entirely

realistic, as the non-ego vehicles have pre-recorded trajecto-

ries and do not always properly respond to deviations of

the ego vehicle from its original trajectory, leading to an

artificially high number of collisions. Hence, we also extract

the hard brake rate to help quantify how often dangerous

driving situations occur.

VII. RESULTS

We present validation results for root-weighted square

error in Fig. 4. The RWSE results show that the BC models

have competitive short-horizon performance, but accumulate

error over longer time horizons. GAIL produces more stable

trajectories and its short term predictions perform well.

We clearly see the controller adhere to the lane-centerline,

so its lane offset error is close to a constant 0.5, which

demonstrates that human drivers do not always closely track

the nearest lane-centerline.

KL divergence scores are given in Fig. 5. The KL diver-

gence results show very good tracking for SG in everything

but jerk. SG cannot overfit and always takes the average

action, so its performance on other metrics is unremark-

able. GAIL GRU performs well on the iTTC, speed, and

acceleration metrics, but it does poorly with respect to turn-

rate and jerk. This poor performance is likely due to the
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Fig. 4: The root weighted square error for each candidate model vs.
prediction horizon. Deep policies outperform the other methods.

fact that although on average the GAIL GRU policy takes

similar actions to humans, it tends to oscillates between these

actions. For instance, rather than outputting a turn-rate of

zero on straight road stretches, it alternates between out-

putting small positive and negative turn-rates. In comparison

with the GAIL policies, the BC policies perform worse on

iTTC. The GRU version has the largest KL divergence in

acceleration, mostly due to its accelerations being generally

small in magnitude, but does reasonably well with turn-rate

and jerk.

Validation results for emergent variables are given in

Fig. 6. The emergent values show that the GAIL policies

outperform the BC policies, acting more like the hand-coded

controller. In comparison to BC, the GAIL GRU policy has

the closest match to the data everywhere except for hard

brakes, as it rarely takes extreme actions. Mixture regression

largely performs better than SG and is on par with the BC

policies, but is still susceptible to cascading errors. Offroad

duration is perhaps the most striking statistic; only GAIL

(and of course IDM + MOBIL) stay on the road for extended

stretches. SG never brakes hard as it only drives straight,

causing many collisions as a consequence. It is interesting

that the collision rate for IDM + MOBIL is roughly the same

as the collision rate for GAIL GRU, despite the fact that IDM

+ MOBIL should not collide. The inability of other vehicles

within the simulation environment to fully react to the ego-

vehicle may explain this phenomenon.

The results demonstrate that GAIL-based models capture

many desirable properties of both rule-based and machine

learning methods, while avoiding common pitfalls. With

the exception of the hand-coded controller, GAIL policies

achieve the lowest collision and off-road driving rates, con-

siderably outperforming baseline and similarly structured BC

models. However, GAIL also achieves a lane change rate

closer to real human driving in comparison to other learning

methods.

Furthermore, extending GAIL to recurrent policies leads to

improved performance. This result is an interesting contrast

with the BC policies, where the addition of recurrence tends

not to yield better results. Thus, we find that recurrence by

itself is insufficient for addressing the detrimental effects that

cascading errors can have on BC policies.

VIII. CONCLUSIONS

This paper demonstrates the effectiveness of deep imi-

tation learning as a means of training driver models that

perform realistically over long time horizons while simul-

taneously capturing microscopic, human-like behavior. Our

contributions have been to (1) extend Generative Adversarial

Imitation Learning to the optimization of recurrent policies,

and to (2) apply this technique to the creation of a new, intel-

ligent model of highway driving that outperforms the state of

the art on several metrics. Although behavioral cloning per-

forms on par with Generative Adversarial Imitation Learning

on short (∼2 s) horizons, its greedy behavior prevents it from

achieving realistic driving over an extended period. The use

of policy optimization by Generative Adversarial Imitation

Learning enables us to overcome this problem of cascading

errors to produce long-term, stable trajectories. Furthermore,

the use of policy representation by deep, recurrent neural

networks enables us to learn directly from general sensor

inputs (i.e., LIDAR distance and range rate) that can capture

arbitrary traffic states and simulate partial observability.

We have argued that deep imitation learning can be used

to produce realistic highway driver models, but we must

stress that this framework is quite general. There is no

reason, in principle, why LIDAR feature representations or

recurrent policy optimization through Generative Adversar-

ial Imitation Learning can not be applied directly to the

modeling of other driving conditions (e.g., urban or rural

driving), assuming the availability of sufficient training data.

In fact, the memory mechanism introduced by gated recurrent

units may provide a natural way to allow, for instance,

an intersection policy to learn about turn-taking at stop

signs. However, we anticipate difficulties capturing the entire

range of human driving behavior in a single neural network,

as intelligent knowledge transfer between interrelated tasks

remains an open problem in deep learning. Future work

will explore how latent variable models, such as variational

autoencoders, can be combined with our approach in order

to capture how drivers change their style depending on scene

context. The code associated with this paper can be found at

https://github.com/sisl/gail-driver.
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