

Studying spread patterns of COVID-19 based on Spatiotemporal data

Beiyu Lin¹, Xiaowei Jia², Zhiqian Chen³

¹University of Texas – Rio Grande Valley ²University of Pittsburgh ³Mississippi State University

Motivation

Motivation

Outline

- Human routine behavior modeling
 - Challenges of behavior modeling
 - Properties of spatiotemporal data
 - Inverse reinforcement learning
 - Behavior patterns and epidemic spreads
- Structural learning on networks
 - Graph neural networks (GNN) for epidemiology
 - Basics of GNN and spatiotemporal GNN
 - GNN, SIR, and PDE
- Remote sensing
 - Potential of using remote sensing (RS) data in monitoring large-scale changes
 - RS for studying effects of climate change on epidemics
 - RS for studying impacts of the pandemic

Spatiotemporal Data Types

- Event or process model
 - Daily routine behavior
 - (human navigation trajectories)

- Temporal change model
 - Traffic model (GNN)
 - (moving speed, acceleration, and directions)
- Temporal snapshot model
 - Remote sensing data
 - (trajectories of raster data, points, lines, and polygons)

Data Type 1: event or process model

Event or process model – behavior modeling

- Challenges of behavior modeling
- Properties of spatiotemporal data
- Inverse reinforcement learning
- Behavior patterns and epidemic spreads

Behavior Modeling — Challenges

Why is this hard?

- Human behavior is highly complex
- Activities vary over time
- Interdependencies among activities
- Habit with periodic behaviors
- Individual preferences 🖌

Model requirements

- Capture activities in continuous time
- Predict the relationship between activities and health status
- Provide timely and interpretable

prediction

Properties of spatiotemporal data

- Inter-disciplinary nature
- Continuous space and time
- Spatial relationships among the variables
 - Observations are not independent and identically distributed (i.i.d)
- Spatial structure of errors
- Nonlinear interactions in feature space
 - people with similar characteristics tend to cluster together in the same neighborhoods

Properties of spatiotemporal data

How to capture implicit spatiotemporal relationships?

Data-driven approach

• One way -- incorporate spatial and temporal information into the data mining process, e.g., inverse reinforcement learning.

What is Reinforcement Learning?

Background – Markov decision process

- A *Markov decision process* (MDP) model contains:
- A set of possible states S
- A set of possible actions A
- A real valued reward function *R(s, a)*
- A transition matrix *P*

Background – Reinforcement Learning

Background – Inverse Reinforcement Learning

Behavior patterns and epidemic spreads

Ohi, Abu Quwsar, et al. "Exploring optimal control of epidemic spread using reinforcement learning." *Scientific reports* 10.1 (2020): 1-19. Singh, Meghendra, et al. "Behavior model calibration for epidemic simulations." *Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems*. 2018.

Behavior patterns and its impacts on epidemic spreads

Define the Markov decision process (MDP) <S, A, P, R>:

- S all possible health states of an agent
- A avoid touch eyes; avoid touching nose; avoid touching mouth;
 Possible responses: never, sometimes, or always ⇔ 351 actions
- P Transitions in the state space, given an action a in A
- R + reward: not getting infected;- reward / cost: taking an action

Behavior patterns and epidemic spreads

cost _a	cost associated with the action a
$P_i(S \to E a)$	Probability of transitioning from susceptible (S) to exposed (E) on the <i>i</i> th day, given taking the action a
D	Total number of days of the simulation

Behavior patterns and epidemic spreads

How to estimate $P_i(S \rightarrow E|a)$?

$$\begin{aligned} \frac{dS}{dt} &= \mu - (\beta I + \mu)S, \\ \frac{dE}{dt} &= \beta SI - (\mu + \sigma)E, \\ \frac{dI}{dt} &= \sigma E - (\mu + \gamma)I, \\ \frac{dR}{dt} &= \gamma I - \mu R. \end{aligned}$$

Variable	Value
ODE simulation duration	100 days
μ	0.0
β	[0.3, 0.6]
γ	0.125
σ	0.5
Initial proportion of exposed agents	0.0001
Initial proportion of infectious agents	0.0001
Initial proportion of susceptible agents	0.9998
Initial proportion of recovered agents	0.0

Behavior patterns and its impacts on epidemic spreads

Behavior pattern modeling - IRL

Given < S, A, P > of an MDP + estimate of an optimal policy $* \pi$ estimate an optimal reward function R

The objective function J(C)

$$J(C) = \frac{1}{2 * |C|} \sum_{b \in B} (N_{C_b} - N_b)^2$$

$$C^* = \arg\min_C J(C)$$

Behavior pattern modeling - IRL

Three optimization methods for behavior model calibration

- Numerical Gradient Descent (NGD)
- Cross Entropy (CE)
- Smoothed-Cross Entropy (SCE)

Behavior pattern modeling - IRL

Data Type 1: event or process model – conclusion

- Challenges of behavior modeling
- Properties of spatiotemporal data
- Inverse reinforcement learning
- Behavior patterns and epidemic spreads

5 minutes break