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Modeling Fitting

Hypothesis
Formal modeling and analysis of human behavior can properly
advance disciplines ranging from psychology to economics.

Formal Models of Human Indoor Routine Patterns

* Analyze the inter-arrival times of activities (e.g. Eat, Cook)
=> Heavy tailed distributions, the Pareto distribution
Investigate the relationship between formal models and a
resident health status

=> Bed to toilet transitions reflect mobility difficulties

Predict subgroup classifications from inter-arrival times
=> 81.4% prediction accuracy from Work inter-arrival times

Investigate interdependencies of certain activities both at 99
smart homes and among subgroups
=> Bivariate or multivariate Pareto distributions

Construct Markov models for activities and locations
=> Selected orders of Markov model for indoor behavior
=>» Different order of MC and a resident’s health status

interactions and time spent in locations) (future)
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Inter-Arrival Times of Sequences of Activities

Spread of the longer 20% inter-arrival times Mobility statuses captured by sensor data and self-reported data
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Interdependencies of certain activities
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Markov Models of both Sequences of Activities and

Loc - Selected Order for Different Datasets

#of  activities activities Jocati clusters clusters
Group # Groups homes withCPD  without CPD °@HO™  with start/end  w/o start/end
1 All 99 N/A 1 N/A 1 1
2 All Young 14 2 1 4 1 1
3 All Middle Aged 6 1 1 3 1 1
4 Middle Aged Single 4 1 1 3 1 1
5 Middle Aged Double 2 1 1 3 1 1
6 Middle Aged Not Healthy 1 1 1 2 1 1
7 Middle Aged Healthy 5 2 1 3 1 1
8 Middle and Old 3 1 1 3 1 1
9 All Old 53 3 1 4 1 1
10 Old Single 41 2 1 4 1 1
11 Old Double 12 2 1 3 1 1
12 0ld Single Healthy 16 2 1 4 1 1
13 0ld Single Not Healthy 17 2 1 4 1 1

Hidden Markov Model
I
A As Ag

Our routine model generates a
particular routine from a resident R;,
by first generating a sequence of
hidden states s, 54, ... according to a
Markov model. Each state s; then
generates a list of activities ag;,
as according learning from
history data.

Stage 1 Stage 2

)

State transitions for
routine models.
Activities, a;, and
locations, [; , are
included in distinct
states and routines
progress through the
stages in a fixed
order.

A Model Combines Other Elements

Social interactions:

- Seniors whether or not keep the doors open

- Compare their health status

Time Spent in Locations:

- Duration models including parametric models,
semiparametric models, nonparametric models

These findings will help researchers

- Understand indoor activity routine patterns

- Develop more
predicting
timings

- Automate diagnoses

- Design customized behavioral interventions

- Prov1de act1v1ty ant1c1patory services that

routine

sophisticated models of
behaviors

and their
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