
Few-Short Learning for Detecting Affective States
from Keyboard and Mouse Data

Ramu Gautam*, Beiyu Lin†, Mei Yang*

*Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, Las Vegas, USA
†School of Computer Science, University of Oklahoma, Norman, USA

Emails: ramu.gautam@unlv.edu, beiyu.lin@ou.edu, mei.yang@unlv.edu

Abstract—Detecting human emotional states is crucial for
improving employee well-being and productivity. Traditional
methods for emotion recognition often require obtrusive sensors
or raise privacy concerns. Unobstructive approaches like using
keyboard and mouse data to measure affective states have
been shown to be accurate. However, due to the inherent
class imbalance in human affect data, the methods developed
for affective state detection struggle in identifying less-common
affective states. We investigate few-shot learning techniques to
address this issue. Specifically, we evaluate the performance of
prototypical networks with various neural network backbones
on a time-series emotion recognition task with limited labeled
data. The results demonstrate that the prototypical network with
an RNN backbone achieves the best classification performance
among the few-shot learning models evaluated. Notably, one-shot
trained prototypical networks outperform traditional supervised
machine learning approaches across all metrics, highlighting
their ability to learn discriminative class representations from
minimal labeled samples, even with class imbalance. By enabling
accurate emotion detection from readily available keyboard and
mouse inputs without specialized hardware or privacy trade-
offs, the proposed few-shot learning approach shows promise for
developing unobtrusive affect-aware tools to enhance employee
productivity and well-being in diverse work environments.

Index Terms—few-shot, one-shot, emotion, affect, keyboard,
mouse, PAM

I. INTRODUCTION

Around 49% of people working with a computer for more
than 4 hours a day and 30% of those working with a computer
for 2-4 hours a day report stress due to computer use [1].
Affects such as stress and fatigue have been shown to cause at-
tention loss, slow reaction, and tiredness leading to diminished
productivity and burnout [2]. Decrease in productivity has been
observed in subjects during a negative emotional state. The
study in [3] found that 70% of users showed decreased typing
speed in negative emotional state and 83% of users showed
increase in typing speed in positive emotional state compared
to the neutral state. With the increase in popularity of work
from home, the blurring of lines between professional and
personal lives in work-from-home may cause new forms of
stress and other emotional afflictions [4]. Accurate reading of
human affective states could help make decisions that improve
employee well-being and productivity. Developing tools to
detect emotional states and enabling proper emotional well-
being strategies in workplace is thus of vital importance [5].

Different approaches have been studied for detecting hu-
man emotional states. Many of them require sensors directly

attached to the user [6] [7]. These methods require specialized
hardware, which can be expensive and not feasible due to
budget constraints. Other methods require using external sen-
sors such as microphones or webcams [8] [9] [10]. In both of
these methods, the users are aware of being monitored, which
in itself can cause changes in the emotional state. Attaching
physical sensors to the subjects continuously throughout the
day may be considered obtrusive or invasive. Furthermore,
both of these methods raise privacy concerns. This creates
a need for an unobtrusive and non-invasive way of measuring
affects.

One unobtrusive way of detecting affects is measuring
human emotional states from keyboard and mouse usage
data. This approach does not require any additional hardware
and is suitable for both traditional office environments and
work-from-home scenarios. In addition, it can also be easily
integrated into the work environment at scale. Various machine
learning methods have been applied to identify emotional
states based on keyboard and mouse usage data and shown
to be effective [3] [7] [11]. However, these methods still have
some limitations. Human affect states (e.g., very low, low,
neutral, high, and very high stress) do not have a balanced
distribution. Some states are represented more frequently than
others [12]. The imbalanced labeled data may result in the
tools developed for detecting human affective states underper-
form in detecting less common states.

In this paper, we explore few-shot learning techniques and
various machine learning methods to address this issue. The
remainder of the paper is structured as follows: Section II
reviews relevant literature. Section III describes the method-
ology, including details on the dataset, problem formulation
as a few-shot learning task, and the prototypical network
architecture with different neural network backbones. Section
IV presents the experimental setup, results, and analysis com-
paring the classification performance of the few-shot models
against traditional supervised learning approaches. Finally,
Section V concludes with a summary of findings and potential
future directions.

II. LITERATURE REVIEW

Keyboard and mouse usage data have been used by many
studies to measure users’ affective states. In [13], a behavioral
method is developed to investigate the influence of induced

film clips on users’ motor-behavioral parameters while com-
pleting a computer task. It measures five affective states: Low
Valence Low Arousal, High Valence Low Arousal, Neutral,
Low Valence High Arousal, and High Valence High Arousal.
Keystroke time (time between the press and release of a
key) and flight time (time between a key release and next
key press) have been proposed to detect the user’s emotional
states [3] [14]. Various classifiers like Logistic Regression,
Multilayer Perceptron (MLP), and Random Tree are used to
detect affects. In [11], Multiple Instance Learning (MIL) is
applied to Random Forest (RF) classification to distinguish
three stress levels (Low, Medium, High). They collect data
using a purpose-built application structured to evoke stress by
requiring each participant to complete eight computer tasks. A
similar method is used in [3] to recognize three emotion cat-
egories (neutral, positive and negative) from keyboard stroke
patterns. In [15], a method to classify emotional states based
on keystroke pattern and the type of texts typed by the user is
proposed. Keyboard and mouse usage data has been used in
several other studies to detect stress [16] [17], drowsiness [18]
and fatigue [19] [20].

Information such as sensor readings, human actions and
keyboard and mouse activity is present as sequential data. The
order of the information is a key characteristic of sequential
data. Sequential data classification tasks are common in real-
life situations such as stock trading, trend prediction, anomaly
detection, user activity recognition, action recognition, and
real-time physical and/or mental health tracking. Because of
this, there has been a significant interest in sequential data
classification research.

In [21], a Support Vector Machine (SVM) classifier is
used for the classification of heartbeat data into different
categories using the statistical features extracted from the
heart rate variability (HRV) of the signals. A K-nearest-
neighbor (KNN) based time-series classification technique
for classifying time-series data is proposed in [22]. In [?],
they propose approximating the nearest neighbor(s) with the
help of clustering as a preprocessing step to mitigate the
problem of kNN high computational cost. Deep learning tech-
niques, particularly Convolutional Neural Networks (CNNs),
have been extensively explored for classification of sequential
data [23] [24] [25]. Recurrent neural networks (RNNs) are
a class of artificial neural networks well-suited for processing
sequential data, such as text, speech, and time series. By incor-
porating a feedback loop to maintain an internal state, RNNs
can capture dependencies between elements in a sequence,
enabling them to effectively model contextual outputs. RNNs
have been widely adopted for time series classification over
the years [26] [27] [28]. Long Short-Term Memory (LSTM)
networks are a type of RNN designed to be able to learn
long-term dependencies in sequential inputs, making them
effective at tasks like sequential data classification and time
series prediction [29] [30] [31].

Despite the extended work in sequential data classification,
obtaining labeled data can be expensive, time-consuming, or
even infeasible. Few-shot learning aims to develop models that

can effectively learn and generalize from a limited number of
labeled samples. Prototypical networks [32] are a common
choice for few-shot classification of sequential data [33] [34]
[35].

III. METHODOLOGY

This section first explains the dataset and data preprocessing
steps. It then formally defines the problem as a few-shot
learning task. The subsequent subsection describes the few-
short learning technique and the prototypical network.

A. Data Preprocessing

In this study, we use a publicly available dataset, Stress
Detection by Keystroke, App & Mouse Changes [36], that
has two parts: 1) a sequential dataset captured activities of
a keyboard and computer mouse when two participants are
using computers, 2) users’ affect metrics.

For the sequential dataset, we list a sample of the dataset in
Table I that includes timestamps (denoted as “Time”), both
keyboard and mouse activities (denoted as “Event Type”),
cursor positions in X and Y coordinates (denoted as “X” and
“Y”), and parts of the day when those activities happened
(denoted as “Daylight”). The keyboard and mouse activities
(denoted as “Event Type”) include a total of 6 mouse ac-
tivities: Move, Left Pressed, Left Released, Right Pressed,
Right Released, and Scroll. As shown in Table II, the
keystroke data captures the press time and release time of
the key activated by the user. The key activated by the user is
also recorded. The mouse speed data calculated from the raw
mouse activity data is also available in the dataset. Mouse in-
activity duration and keyboard inactivity duration derived from
the mouse activity data and keystroke data are also available in
the dataset as the user inactivity data. Table III and IV show
mouse speed and user inactivity, respectively. As shown in
Table V, the application usage data records the users’ active
application and the number of background applications open
at the moment, captured every several seconds or whenever
the active application changes.

The user affect dataset includes the users’ photographic
affect meter (PAM) values among other user affect met-
rics measured at 5-30 minute intervals. Other metrics in-
clude Fatigue (denoted as Fatigue Val), Stress (denoted as
Stress Val), Energy (denoted Energy Val), and Pleasantness
(denoted Pleasant Val). Table VI shows a sample of the user
affect condition dataset. PAM is a tool for measuring affect
(emotional state) in which users select from a grid of photos
the one that best represents their current mood [37]. User’s
PAM value can take values 1 to 16 arranged in a 4×4 grid
as shown in Fig. 1. The PAM scores of 1-16 map to PANAS
Positive Affect [38] scale. The PAM value 1 represents the
Negative Valence Low Arousal peak and the PAM value 16
represents the Positive Valence, High Arousal peak. The PAM
grid is divided into four valence/arousal quadrants with quad-
rant scores of 1 (NVLA: Negative valence/Low Arousal), 2
(NVHA: Negative Valence/High Arousal), 3 (PVLA: Positive
Valence/Low Arousal) and 4 (PVHA: Positive Valence/High

Arousal) to indicate the subject’s affect [37]. As highlighted by
four colors in Fig. 1, the four quadrants include PAM values
1-4, 5-8, 9-12 and 13-16, respectively.

From the keystroke, mouse and application usage data, a
range of derived metrics are calculated for non-overlapping
30-minute intervals, as shown in Table VII. These include
the inactivity time, total keystroke count, average mouse
speed, and the most frequently used application. Only mouse
inactivity time is used to calculate the total inactivity time.
The “PAM Val” column includes the PAM quadrant score
measured during each interval. We define a trajectory as a
4-hour window that includes 8 adjoining 30-minute intervals.
Table VII presents an example of such a trajectory, showcasing
the array of features extracted from the raw data.

For each trajectory in our dataset, the PAM value of the
final interval is assigned as its label. The combined 62 hours of
data from two users is transformed into 62 trajectories, out of
which 2 (3.2%) of trajectories have label 4 (PVHA) while 41
(66.1%) of trajectories have label 2 (NVHA). 10 (16.2%), and
9 (14.5%) trajectories have labels 1 (NVLA) and 3 (PVLA),
respectively.

Before splitting the dataset into training and testing sets,
data augmentation is performed for Class 4. Two trajectories
were added to the existing set of trajectories. After adding
those two examples, our final dataset consists of 64 trajecto-
ries. To ensure that each class is represented at least twice in
the training set and the test set, stratified sampling is used so
that both the training and test sets get 50% of total trajectories.

Fig. 1: Photographic Affect Meter (PAM) Grid

B. Problem Definition

In this study, we aim to leverage the keyboard and mouse
activities from users to identify their emotional status via
PAM. Specifically, users’ activity data from 4-hour windows
will be used to predict their PAM quadrant score. Since the
dataset has a limited number of labeled data and an imbalanced

TABLE I: Mouse activity data

Time Event Type X Y Daylight
2021-09-10 11:59:42.515770 Move 518 381 Afternoon
2021-09-10 11:59:42.523750 Move 511 388 Afternoon
2021-09-10 11:59:42.531727 Move 509 393 Afternoon
2021-09-10 11:59:42.539705 Move 505 397 Afternoon

...
...

...
...

...
2021-09-10 11:59:44.892417 Left Pressed 720 505 Afternoon

TABLE II: Keyboard activity data

Key Press Time Release Time
$ 2021-09-10 12:05:31.488128 2021-09-10 12:05:31.567916
$ 2021-09-10 12:05:31.810266 2021-09-10 12:05:31.910000

enter 2021-09-10 12:05:32.074560 2021-09-10 12:05:32.208202
arrow key 2021-09-10 12:06:59.935683 2021-09-10 12:07:00.112209
arrow key 2021-09-10 12:07:00.618858 2021-09-10 12:07:00.801367

class distribution, this study approaches the problem as a few-
shot classification task.

C. Few-Shot Learning (FSL)

Unlike traditional supervised learning, which requires a
large volume of labeled data to train robust models, few-shot
learning techniques focus on leveraging prior knowledge
to learn from a small number of samples. By framing our
classification task as a few-shot learning problem, we can
leverage approaches that are specifically designed to handle
small and imbalanced datasets.

1) Episodic Training in FSL: Few-shot learning algorithms
are trained using an episodic training procedure where each
episode consists of a support set S with M labeled samples
from a subset of N classes in the base set. The model is
trained to classify another set of samples (called the query set
Q) from the same set of classes in the base set. Such a training
episode is referred to as an N-way, M-shot training episode.
Fig. 2 illustrates a training episode in a 3-way 2-shot setting.
As shown in the figure, in 3-way 2-shot training procedure, a
support set S in each episode is created by selecting exactly
two (M = 2) random samples from three randomly selected
classes (N = 3) in the base set. Query set Q) is created by
selecting one random sample from the same three classes.
One-shot learning is a specific type of few-shot learning where

TABLE III: Mouse speed data

Time Speed (ms) Daylight
2021-09-10 11:59:43.521084 0.9937275914428129 Afternoon
2021-09-10 11:59:45.192614 0.9937285789383203 Afternoon
2021-09-10 11:59:46.255772 0.9976843745666308 Afternoon
2021-09-10 11:59:47.699912 1.9953667583870254 Afternoon
2021-09-10 11:59:48.708217 0.9986777506581286 Afternoon

TABLE IV: User inactivity data

Type Stopped Time Duration (s) Daylight
Keyboard 2021-09-10 11:59:39.834937 351.647207 Afternoon

Mouse 2021-09-10 12:05:44.520289 7.195763 Afternoon
Mouse 2021-09-10 12:06:14.316669 6.46169 Afternoon

Keyboard 2021-09-10 12:05:32.202218 87.727479 Afternoon
Mouse 2021-09-10 12:06:59.080968 17.090314 Afternoon

TABLE V: Active windows data

Time App Name BG App Cnt
2021-09-10 11:59:39.449966 TextLogger.exe 8
2021-09-10 11:59:46.178977 TextLogger.exe 8
2021-09-10 11:59:59.178226 TextLogger.exe 8
2021-09-10 12:00:00.847763 explorer.exe 8
2021-09-10 12:00:02.272954 explorer.exe 8

Fig. 2: Illustration of a 3-way 2-shot task in a few-shot training
episode.

the model is trained and evaluated on tasks with only a single
sample per class in the support set.

Prototypical networks [32] are a popular approach for few-
shot learning. The prototypical networks learn a discriminative
embedding space where samples from the same class are
closer to each other than to samples from other classes. The
basic idea behind a prototypical network is shown in Fig. 3.
Transformation of input samples into the embedding space is
performed by an embedding function (also referred to as a
backbone or a feature extractor). The backbone is typically a
pre-trained neural network model that has been trained on a
large dataset for a related task, for example, a CNN model
trained on ImageNet is used in few-shot image classification
tasks. Using a pre-trained backbone can help in learning more
effective representations from the limited labeled samples.

In few-shot learning, a class prototype refers to a repre-
sentation that characterizes or summarizes the class. These
prototypes are typically computed from the limited labeled
samples available during the few-shot training phase, often
by calculating the mean or centroid of the feature vectors of
the few samples from each class. At each training episode
the prototype of class k, c⃗k, is calculated as the mean of the
embeddings of M samples of class k in the support set, i.e.,

c⃗k =
1

|Sk|
∑

(xi,yi)∈Sk

fθ(xi) (1)

where Sk represents all samples from class k in the support
set, (xi, yi) is one sample in Sk and fθ is the embedding
function parameterized by θ.

To classify query samples, the Euclidean distance is com-
puted between their embeddings and the class prototypes
derived from the support. Each query sample is then assigned
the label of the class whose prototype lies closest to it
in the embedding space. Prototypical networks produce the

distribution over classes for a query set sample based on the
distances between the query embedding and class prototypes.
The softmax function transforms the negative Euclidean dis-
tances into a probability distribution over the classes, allowing
the network to make a prediction by selecting the class with the
highest probability. Specifically, the probability of the query
sample x belonging to class k is computed as:

pθ(y = k|x) = exp(−d(fθ(x), ck))∑
k′ exp(−d(fθ(x), ck′))

, (2)

where y is the predicted class of the query sample x, fθ(x)
is the embedding of the query sample x produced by the
embedding function fθ, and ck is the prototype for class k. The
model is trained by minimizing the negative log-probability of
the query samples’ true class labels shown in eq. (3).

J(ϕ) = − log pϕ(y = k|x) (3)

RNNs, LSTMs, and 1-D convolutional networks are well-
suited for processing sequential data, such as the trajectories in
our dataset. RNN, LSTM, and CNN are thus common choices
as a prototypical network backbone.

IV. EXPERIMENTS AND RESULTS

Various ML models are trained using traditional supervised
learning procedures. This is followed by one-shot classifica-
tion with prototypical networks with various backbones. All
models are evaluated in terms of accuracy, precision, recall,
and F1 scores.

A. Experiment Setup

1) Traditional Supervised Learning: We start with tradi-
tional machine learning algorithms, specifically Logistic Re-
gression, Naive Bayes, SVM, Naive Bayes, kNN, and RF.
Following the traditional machine learning algorithms, clas-
sification is performed with RNN, CNN, LSTM, and ResNet.
The models are trained on the training set and evaluated
on the test set. The RNN model consists of a recurrent
layer followed by a fully connected layer. The RNN layer
has 128 hidden units and 2 stacked layers. This choice of
relatively small network size works well in scenarios with
limited labeled samples, capturing relevant information from
the sequential data while avoiding overfitting. The CNN model
consists of two convolutional layers with a ReLU activation.
The first layer has 32 output channels and a kernel size of 3,
with padding. The second convolutional layer has 64 output
channels and a kernel size of 2, also with padding. After the
convolutional layers, a max-pooling layer with a kernel size
of 2 is applied, and the feature maps are flattened and passed
through a dropout layer with a rate of 0.2. This convolutional
unit is followed by a fully connected layer. The LSTM model
consists of 2 LSTM layers with 128 hidden units followed by
fully connected layers.

TABLE VI: User condition data

Time Fatigue Val PAM Val Stress Val Energy Val Pleasant Val Daylight
2021-09-10 12:03:49.599397 Below Avg 14 Neutral Neutral Neutral Afternoon
2021-09-10 12:05:18.375074 Avg 3 Neutral Neutral S Unpleasant Afternoon
2021-09-10 12:56:42.248174 Below Avg 4 S Stressed S Low Energy Neutral Afternoon
2021-09-10 13:27:00.550791 Low 2 Neutral S Low Energy Neutral Afternoon
2021-09-10 13:57:10.866776 Low 7 V Stressed V Low Energy V Unpleasant Afternoon

TABLE VII: A trajectory

Time App Name Inactivity (s) Keystorke count Speed PAM Val
2021-09-13 14:00:00 opera.exe 1210.531504 215.0 6.644607 2
2021-09-13 14:30:00 opera.exe 1021.323029 358.0 6.498835 1
2021-09-14 10:30:00 opera.exe 1002.831345 19.0 14.601119 1
2021-09-14 11:00:00 Skype.exe 1293.995927 829.0 11.215676 3
2021-09-14 11:30:00 opera.exe 714.970757 1078.0 10.216914 4
2021-09-14 12:00:00 opera.exe 552.622641 256.0 9.928773 1
2021-09-14 12:30:00 opera.exe 1055.705093 140.0 13.519175 1
2021-09-14 13:00:00 opera.exe 777.054938 175.0 7.069363 2

Fig. 3: Prototypical Network.

2) Few-shot Learning with Prototypical Network: The pre-
trained RNN, LSTM, and CNN models from above are used as
the backbones of the prototypical networks after removing the
fully-connected heads. For our few-shot classification problem,
we adopt a 4-way one-shot episodic training procedure and a
2-way one-shot episodic training procedure. One-shot training
simulates limited labeled data availability and the model is
forced to learn from one labeled sample per class in the
support set. After training, the prototypical network models
are evaluated on the test set. Similar to the episodic training
procedure, testing also follows a 4-way one-shot approach.
The embeddings of the support set samples serve as the class
prototypes and query samples are classified to the closest
prototype class. The models are evaluated on the test set over
50 episodes.

B. Results

Table VIII and Fig. 4 show the one-shot classification per-
formance of our prototypical network with various backbones
in terms of accuracy, Precision, Recall, and F1 scores. The
table also includes the classification performance of various
machine learning models trained with traditional supervised
learning. The results show a mixed performance across the
different models and few-shot learning settings. Among the 4-

way one-shot trained models, the prototypical network with
an RNN backbone has achieved the highest accuracy, pre-
cision, recall, and F1 scores at 0.68, 0.68, 0.68, and 0.67,
respectively. This indicates the RNN is able to effectively
learn discriminative features from the time-series data. The
prototypical network with a CNN backbone shows slightly
lower performance in the 4-way one-shot task, with scores of
0.58, 0.58, 0.58, and 0.57 for accuracy, precision, recall, and
F1 scores. The LSTM model lags behind the RNN and CNN
in the 4-way one-shot setting, with the test scores of 0.54,
0.54, 0.53, and 0.51, respectively. Using Linear Discriminant
Analysis (LDA) as a feature extractor, the test score of 0.49
is achieved for accuracy, precision, recall, and F1 scores,
respectively.

In the 2-way one-shot training setting, the prototypical
network with an RNN backbone again exhibits the best perfor-
mance with scores of 0.58, 0.56, 0.58, and 0.56 for accuracy,
precision, recall, and F1 on the test set. The prototypical
network with the CNN backbone shows slightly lower test
scores of 0.55,0.54, 0.55, and 0.52, respectively. Similar to the
4-way, 1-shot setting, the 2-way one-shot trained prototypical
network with an LSTM backbone does not perform well
compared to RNN and CNN backbones with test scores of
0.49, 0.46, 0.49 and 0.46, respectively. The model with an

TABLE VIII: Classification performance

Accuracy Precision Recall F1
Model 4-way 2-way 4-way 2-way 4-way 2-way 4-way 2-way

Proto. Net. (RNN) 0.68 0.61 0.68 0.61 0.68 0.60 0.67 0.60
Proto. Net. (CNN) 0.58 0.55 0.58 0.54 0.58 0.55 0.57 0.52

Proto. Net. (LSTM) 0.53 0.48 0.53 0.48 0.51 0.47 0.52 0.48
Proto. Net. (LDA) 0.49 0.46 0.49 0.46 0.49 0.46 0.49 0.45

RNN 0.68 0.22 0.30 0.25
CNN 0.44 0.57 0.36 0.30

LSTM 0.59 0.35 0.44 0.39
Random Forest 0.59 0.32 0.41 0.31

kNN 0.50 0.15 0.25 0.17
SVM 0.50 0.30 0.36 0.32

Logistic Regression 0.56 0.26 0.33 0.29
Naive Bayes 0.47 0.26 0.34 0.29

MLP 0.56 0.17 0.23 0.16
ResNet 0.59 0.46 0.40 0.35

Fig. 4: Accuracy, Precision, Recall and F1 Scores for one-shot trained prototypical networks and traditional machine learning models.

LDA backbone performed the worst, with test scores of 0.46,
0.46, 0.46, and 0.45, respectively. The combined results from
4-way one-shot and 2-way one-shot settings demonstrate the
RNN’s strong ability to learn class representations of multi-
variate time-series data. All four models perform significantly
better in the 4-way one-shot setting than in the 2-way one-shot
setting.

To ensure that the traditional methods are evaluated on the
same number of samples from each class as the prototypical
networks, a test set is generated by selecting 50 random
samples of each class from the test set. The table shows
the performance of these models on that set. The RNN
model shows the highest accuracy at 0.68. The LSTM model
performs the best among these models in terms of recall and
F1 scores. The CNN model shows the highest precision score
among these models. The results also show that one-shot
trained prototypical networks with RNN, CNN, and LSTM
backbones all outperform the traditional machine learning

approaches in terms of Precision, Recall, and F1 scores. The
traditional training procedure for supervised learning models
typically requires abundant labeled training data across each
target class. The relatively lower performance of the traditional
machine learning methods in our experiments can be attributed
to the limited number of labeled data and the severe class
imbalance present in our dataset.

Due to data constraints, the traditional models are unable
to effectively learn robust and discriminative representations
for the under-represented classes in the dataset. This inher-
ent limitation of the traditional approaches likely hindered
their ability to generalize well to unseen samples during the
evaluation phase, resulting in lower classification accuracy
compared to the one-shot trained prototypical networks. In
contrast, with one-shot learning, the prototypical networks are
able to leverage the feature transformation capability of the
same models to learn more effective class-level representations
from just a few labeled samples per class. The ability to learn

discriminative class representations from just a few samples is
particularly valuable in real-world applications where data is
limited or class distribution is imbalanced.

V. CONCLUSION

This study explored few-shot learning techniques, specifi-
cally prototypical networks with various neural network back-
bones, for classifying human emotional states from time-series
data representing keyboard and mouse usage. The superior
performance of few-shot learning methods like prototypical
networks highlights their ability to learn discriminative class
representations from limited labeled data, even in the presence
of class imbalance. This capability is particularly valuable
for detecting human emotional states, where certain affective
states may be underrepresented in the data. By enabling
accurate emotion recognition from unobtrusive keyboard and
mouse inputs, without requiring specialized hardware or rais-
ing privacy concerns, the proposed few-shot learning approach
paves the way for developing tools to improve employee well-
being and productivity in both traditional office and work-
from-home environments. This approach can also be used to
analyze the affective states of students taking remote learning
classes.

REFERENCES

[1] A. Ellahi, M. S. Khalil, and F. Akram, “Computer users at risk: Health
disorders associated with prolonged computer use,” J. Bus. Manage.
Econ., vol. 2, no. 4, pp. 171–182, 2011.

[2] N. Siddiqui, R. Dave, and N. Seliya, “Continuous user authentication
using mouse dynamics, machine learning, and minecraft,” in Proc. IEEE
Int. Conf. Elect. Comput. Energy Technol. (ICECET), 2021, pp. 1–6.

[3] P. Khanna and M. Sasikumar, “Recognising emotions from keyboard
stroke pattern,” Int. J. Comput. Appl., vol. 11, no. 9, pp. 1–5, 2010.

[4] B. E. Ashforth, G. E. Kreiner, and M. Fugate, “All in a day’s work:
Boundaries and micro role transitions,” Acad. Manage. Rev., vol. 25,
no. 3, pp. 472–491, 2000.

[5] S. Koldijk, M. A. Neerincx, and W. Kraaij, “Detecting work stress
in offices by combining unobtrusive sensors,” IEEE Trans. Affective
Comput., vol. 9, no. 2, pp. 227–239, 2016.

[6] G. Giannakakis, D. Grigoriadis, K. Giannakaki, O. Simantiraki, A. Roni-
otis, and M. Tsiknakis, “Review on psychological stress detection using
biosignals,” IEEE Trans. Affective Comput., vol. 13, no. 1, pp. 440–460,
2019.

[7] A. M. Khan, “Personal state and emotion monitoring by wearable com-
puting and machine learning,” Ph.D. dissertation, Universität Bremen,
2017.

[8] M. Magdin, M. Turcani, and L. Hudec, “Evaluating the emotional state
of a user using a webcam,” Int. J. Interact. Multim. Artif. Intell., 2016.

[9] A. Dingli and A. Giordimaina, “Webcam-based detection of emotional
states,” Vis. Comput., vol. 33, pp. 459–469, 2017.

[10] H. Rahman, M. U. Ahmed, S. Begum, and P. Funk, “Real time heart
rate monitoring from facial rgb color video using webcam,” in Proc. 9th
Annu. Workshop Swedish Artif. Intell. Soc.(SAIS), 2016, pp. 15–46.

[11] L. Pepa, A. Sabatelli, L. Ciabattoni, A. Monteriu, F. Lamberti, and
L. Morra, “Stress detection in computer users from keyboard and mouse
dynamics,” IEEE Trans. Consum. Electron., vol. 67, no. 1, pp. 12–19,
2020.

[12] M. De Choudhury, S. Counts, and M. Gamon, “Not all moods are created
equal! exploring human emotional states in social media,” in Proc. Int.
AAAI Conf. Web Soc. Media, 2012, pp. 66–73.

[13] P. Zimmermann, S. Guttormsen, B. Danuser, and P. Gomez, “Affective
computing—a rationale for measuring mood with mouse and keyboard,”
Int. J. Occupat. Saf. Ergonom., vol. 9, no. 4, pp. 539–551, 2003.

[14] C. Epp, M. Lippold, and R. L. Mandryk, “Identifying emotional states
using keystroke dynamics,” in Proc. SIGCHI Conf. Hum. Factors
Comput. Syst., 2011, pp. 715–724.

[15] A. N. H. Nahin, J. M. Alam, H. Mahmud, and K. Hasan, “Identifying
emotion by keystroke dynamics and text pattern analysis,” Behav. Inf.
Technol., vol. 33, no. 9, pp. 987–996, 2014.

[16] Y. M. Lim, A. Ayesh, and M. Stacey, “Detecting cognitive stress from
keyboard and mouse dynamics during mental arithmetic,” in Proc. Sci.
Inf. Conf., 2014, pp. 146–152.

[17] M. Rodrigues, S. Gonçalves, D. Carneiro, P. Novais, and F. Fdez-
Riverola, “Keystrokes and clicks: Measuring stress on e-learning stu-
dents,” in Manage. Intell. Syst.: 2nd Int. Symp., 2013, pp. 119–126.

[18] S. Natnithikarat, S. Lamyai, P. Leelaarporn, N. Kunaseth, P. Autthasan,
T. Wisutthisen, and T. Wilaiprasitporn, “Drowsiness detection for office-
based workload with mouse and keyboard data,” in Proc. 12th IEEE
Biomed. Eng. Int. Conf. (BMEiCON), 2019, pp. 1–4.

[19] A. Pimenta, D. Carneiro, P. Novais, and J. Neves, “Monitoring mental
fatigue through the analysis of keyboard and mouse interaction patterns,”
in Proc. Hybrid Artif. Intell. Syst.: 8th Int. Conf., 2013, pp. 222–231.

[20] V. Parekh, D. Shah, and M. Shah, “Fatigue detection using artificial
intelligence framework,” Augment. Hum. Res., vol. 5, no. 1, p. 5, 2020.

[21] A. Kampouraki, G. Manis, and C. Nikou, “Heartbeat time series classifi-
cation with support vector machines,” IEEE Trans. Inf. Technol. Biomed.,
vol. 13, no. 4, pp. 512–518, 2008.

[22] Y.-H. Lee, C.-P. Wei, T.-H. Cheng, and C.-T. Yang, “Nearest-neighbor-
based approach to time-series classification,” Decis. Supp. Syst., vol. 53,
no. 1, pp. 207–217, 2012.

[23] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Exploiting multi-
channels deep convolutional neural networks for multivariate time series
classification,” Frontiers Comput. Sci., vol. 10, pp. 96–112, 2016.

[24] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural
networks for time series classification,” J. Syst. Eng. Electron., vol. 28,
no. 1, pp. 162–169, 2017.

[25] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent
neural networks for multimodal wearable activity recognition,” Sensors,
vol. 16, no. 1, p. 115, 2016.

[26] M. Hüsken and P. Stagge, “Recurrent neural networks for time series
classification,” Neurocomputing, vol. 50, pp. 223–235, 2003.

[27] P. Malhotra, V. TV, L. Vig, P. Agarwal, and G. Shroff, “Timenet: Pre-
trained deep recurrent neural network for time series classification,”
arXiv preprint arXiv:1706.08838, 2017.

[28] W. Yu, I. Y. Kim, and C. Mechefske, “Analysis of different rnn autoen-
coder variants for time series classification and machine prognostics,”
Mech. Syst. Signal Process., vol. 149, p. 107322, 2021.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[30] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “Lstm fully convolu-
tional networks for time series classification,” IEEE Access, vol. 6, pp.
1662–1669, 2017.

[31] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate lstm-
fcns for time series classification,” Neural Networks, vol. 116, pp. 237–
245, 2019.

[32] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” Adv. Neural Inf. Process. Syst., vol. 30, 2017.

[33] W. Tang, L. Liu, and G. Long, “Interpretable time-series classification
on few-shot samples,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN).
IEEE, 2020, pp. 1–8.

[34] C. Huang, X. Wu, X. Zhang, S. Lin, and N. V. Chawla, “Deep
prototypical networks for imbalanced time series classification under
data scarcity,” in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., 2019,
pp. 2141–2144.

[35] J. Huang, B. Wu, P. Li, X. Li, and J. Wang, “Few-shot learning for radar
emitter signal recognition based on improved prototypical network,”
Remote Sens., vol. 14, no. 7, p. 1681, 2022.

[36] C. Weerasinghe, “Stress detection by keystroke, app mouse changes,”
2021. [Online]. Available: https://www.kaggle.com/dsv/2948977

[37] J. P. Pollak, P. Adams, and G. Gay, “Pam: a photographic affect meter
for frequent, in situ measurement of affect,” in Proc. SIGCHI Conf.
Human Factors Comput. Syst., 2011, pp. 725–734.

[38] D. Watson, L. A. Clark, and A. Tellegen, “Development and validation
of brief measures of positive and negative affect: the panas scales.” J.
Personality and Soc. Psychol., vol. 54, no. 6, p. 1063, 1988.

